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Abstract

Through the analysis of conventional TVD limiters, a new multi-dimensional limiting function is derived for an

oscillation control in multi-dimensional flows. And, multi-dimensional limiting process (MLP) is developed with the

multi-dimensional limiting function. The major advantage of MLP is to prevent oscillations across a multi-dimensional

discontinuity, and it is readily compatible with more than third order spatial interpolation. Moreover, compared with

other higher order interpolation schemes such as ENO type schemes, MLP shows a good convergence characteristic in a

steady problem and it is very simple to be implemented. In the present paper, third and fifth order interpolation schemes

with MLP, named MLP3 and MLP5, are developed and tested for several real applications.

Through extensive numerous test cases including an oblique stationary contact discontinuity, an expansion fan, a

vortex flow, a shock wave/vortex interaction and a viscous shock tube problem, it is verified that MLP combined with

M-AUSMPW+ numerical flux substantially improves accuracy, efficiency and robustness both in continuous and dis-

continuous flows. By extending the current approach to three-dimensional flows, MLP is expected to reduce computa-

tional cost and enhance accuracy even further.
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1. Introduction

At present stage, one of challenges in CFD is to provide an accurate and efficient solution in the analysis

or design of three-dimensional aerodynamics. In order to cope with the requirement, a numerical scheme

should be able to describe multi-dimensional flow phenomena as much as possible. However, up to now,
most successful numerical methods, including spatial discretization and interpolation schemes, have been

developed based on one-dimensional flow physics. Although this approach allows the rigorous analysis

of numerical schemes, straightforward extension to two- or three-dimensional flows by dimensional split-

ting eventually leads to insufficient or excessive numerical dissipation, which in turn badly influences on the

accuracy, robustness and convergence of numerical solutions. In other words, physically unacceptable

interruption in numerics always results in the inaccurate representation of real physics.

In order to incorporate multi-dimensional physical phenomena, numerous approaches have been tried

and developed by considering flow information along additional directions. Most notably, by modeling
wave-speeds [1], rotating fluxes at a cell-interface [2–5], or by introducing fluctuation splitting and so on

[6–8], various versions of multi-dimensional upwind fluxes have been developed. Obviously, a multi-

dimensional scheme should bring noticeable improvement over conventional schemes in terms of accuracy.

However, some degree of accuracy enhancement is compromised by robustness problem and computa-

tional cost, which is one of the obstacles in practical implementation. For example, most multi-dimensional

schemes do not show monotonic behavior across a multi-dimensional discontinuity. When they are applied

to high speed flow problems involving strong shocks, severe oscillations across strong shock are frequently

generated and finally they may lead to a failure. One of the fundamental reasons, according to authors�
experience, is that there is not an appropriate oscillation control method for a pure multi-dimensional prob-

lem. Thus, it is important to develop an oscillation control process based on multi-dimensional flow

phenomena.

Concerning oscillation control schemes, so many studies have been carried out since the late 1970s and

several important concepts, such as TVD, TVB, ENO, etc., have been proposed for better convergence and

stable calculation. The concept of TVD (total variation diminishing) was proven to be extremely successful

in solving hyperbolic conservation laws [9,10]. Although TVD criterion provides fundamental idea for

oscillation control and is still very popular, conventional TVD schemes are somewhat unsatisfactory near
extrema in terms of accuracy and convergence. In order to overcome this limitation, ENO (essentially non-

oscillatory) schemes [11] and the concept of TVB (total variation bounded) [12] were introduced. The key

idea of ENO schemes is to use the smoothest stencil among several candidates in evaluating fluxes at a cell

boundary which should yield higher order spatial accuracy and essential non-oscillatory profile near

shocks. TVB concept allows oscillations only if spurious oscillations do not grow unboundedly large as

time evolves. Although TVB or ENO avoids unphysical clipping at extrema and enhances accuracy, it is

inevitable to yield undershoot and/or overshoot which in turn influences convergence badly.

Most oscillation-free schemes have been based on the mathematical analysis of one-dimensional convec-
tion equation and applied to system of equations with the help of some linearization step. Also, they are

applied to multi-dimensional applications with dimensional splitting. Although they may work successfully

in many cases, it is insufficient or almost impossible to control oscillations near shock discontinuity in mul-

ti-space dimensions. For that reason, the need of oscillation control method for multi-dimensional appli-

cations is obvious.

The objective of the present paper is to develop a higher order limiting process which can control oscil-

lations in multi-dimensional situations and be applicable to both unsteady and steady problems. In this re-

spect, convergence is an important factor. Firstly, we derive a multi-dimensional limiting function to
control oscillations. For that purpose, we adopt TVD concept as a starting point since it shows a better

convergence characteristic among available oscillation control methods. And, a higher order polynomial

interpolation combined with the multi-dimensional limiting function, called multi-dimensional limiting
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process (MLP), is developed which possesses a higher degree of accuracy, computational efficiency and

convergence.

The overall characteristics of MLP are summarized as follows:

� Oscillation control in multi-dimensional problems (multi-dimensional limiting process).
� Robust convergence characteristic with the help of multi-dimensional limiting function.

� Higher spatial accuracy (more than second order TVD scheme).

� Similar level of computational efficiency compared to conventional TVD MUSCL approach.

The direct comparison of MLP with other higher order interpolation schemes may be somewhat difficult

because MLP equally emphasizes convergence, accuracy and efficiency in multi-dimensional flow situation.

As a successful higher order interpolation scheme, several versions of ENO/WENO interpolation are devel-

oped [11,13–16] and widely used. The advantage of ENO/WENO is that more than third order spatial accu-
racy may be maintained even in local extrema. However, it shows oscillatory behavior and some

convergence problems in a multi-dimensional shock discontinuity because it does not consider multi-

dimensional flow situation. On the other hand, with the multi-dimensional limiting function, MLP can pre-

vent oscillations in shock region and provide a good convergence characteristic. Simultaneously, MLP

combined with M-AUSMPW+ may maintain higher order spatial accuracy like ENO/WENO in smooth

region though the overall accuracy of MLP in discontinuity may be somewhat lower than ENO/WENO.

In addition, it is very efficient to be implemented and yields very acceptable computational cost compared

with conventional TVD MUSCL approaches because MLP adopts fixed and relatively compact stencil.
The present paper is organized as follows: After a brief description on the governing equations and basic

spatial discretization in Section 2, the multi-dimensional limiting function is derived and MLP is described

in detail in Section 3. In Section 4, numerous test cases are presented to verify the characteristics of MLP.

Finally conclusions based on the numerical tests and analyses of the previous sections are drawn.
2. Governing equations and spatial discretization (M-AUSMPW+)

The two-dimensional Navier–Stokes equations in a conservative form is used as
oQ

ot
þ oE

ox
þ oF

oy
¼ oEv

ox
þ oFv

oy

� �
; ð1Þ
where the flow and flux vectors are
Q ¼

q

qu

qv

qet

0
BBB@

1
CCCA; E ¼

qu

qu2 þ p

quv

qet þ pð Þu

0
BBB@

1
CCCA; F ¼

qv

qvu

qv2 þ p

qet þ pð Þv

0
BBB@

1
CCCA; Ev ¼

0

sxx
sxy
ev

0
BBB@

1
CCCA; Fv ¼

0

sxy
syy
fv

0
BBB@

1
CCCA ð2Þ
with ev = usxx + vsxy � qx, fv = usxy + vsyy � qy. For calorically perfect gas, the equation of state is given by
p ¼ c � 1ð Þqe ¼ c � 1ð Þq et �
1

2
u2 þ v2
� �� �

ð3Þ
with c = 1.4 for air.

As a baseline scheme, M-AUSMPW+ developed in Part I is adopted as follows:
F1
2
¼ �Mþ

Lc1
2
WL;1

2
þ �M�

Rc1
2
WR;1

2
þ Pþ

LPL þ P�
RPR

� �
; ð4aÞ
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where PL,R = (0,nxpL,R,nypL,R,0)
T and nx,y are the components of the normal vector at a cell-interface. The

vector of WL;R;1
2
is the transferred property at a cell-interface which is given as follows:
WL;R;1
2
¼

qL;R;1
2

qL;R;1
2
uL;R;1

2

qL;R;1
2
vL;R;1

2

qL;R;1
2
HL;R;1

2

0
BBBB@

1
CCCCA; ð4bÞ
where HL;R;1
2
¼ c

c�1

p
L;R;1

2

q
L;R;1

2

þ 0:5 u2
L;R;1

2

þ v2
L;R;1

2

� �
.

The detailed procedure including the Mach number interpolation function and pressure splitting

function are explained in Part I [17]. The basic idea of the method is to re-evaluate the convective prop-

erty,W, appropriately in smooth region to represent physical distribution more accurately. W1
2
is recon-

structed using the primitive variable vector at a cell interface, U1
2
¼ ðq1

2
; u1

2
; v1

2
; p1

2
ÞT which is summarized

as follows:
UL;1
2
¼ UL þ

max 0; UR �ULð Þ UL;sup erbee �UL

� �� �
UR �ULð Þ UL;sup erbee �UL

		 		 min a
UR �ULj j

2
; UL;sup erbee �UL

		 		
 �
; ð5aÞ

UR;1
2
¼ UR þ

max 0; UL �URð Þ UR;sup erbee �UR

� �� �
UL �URð Þ UR;sup erbee �UR

		 		 min a
UL �URj j

2
; UR;sup erbee �UR

		 		
 �
; ð5bÞ
where a = 1 � min(1,max(jMLj,jMRj))2 and UL and UR are values calculated by an interpolation scheme.

The detail is referred to Part I. Similar to Part I, all the vector notations in Part II are introduced for com-

pact expression. Thus, in actual implementation, they should be applied component by component.
3. Multi-dimensional limiting process (MLP)

In developing MLP, monotonicity in multi-space dimensions, more than third order spatial interpo-
lation and good convergence are the main factors to be taken into account. Firstly, through the anal-

ysis of conventional TVD limiters, the multi-dimensional limiting function is derived. And, secondly

third and fifth order interpolation combined with the multi-dimensional limiting function is introduced

in Section 3.3.

3.1. Examination of TVD MUSCL limiter

In view of Godunov-type approach, the steps to construct a numerical flux at a cell-interface usually con-
sist of interpolation stage and evaluation stage. It is known that interpolation stage is generally independent

of evaluation stage where the local Riemann problem is solved at a cell interface. Thus, for higher order

spatial accuracy, interpolation stage is modified without changing a Riemann solver. Referring that piece-

wise constant state generates first order spatial accuracy, a piecewise linear or quadratic distribution is ap-

plied for second or third spatial accuracy. This method for the generation of second order upwind schemes

is often referred as the MUSCL approach [18]. In view of FVS (flux vector splitting) and AUSM-type

schemes, the evaluation stage corresponds to the flux splitting step.

MUSCL approach with TVD limiter is written as follows:
UL ¼ �Ui þ
1

4
1� jð Þ/ rLð Þ þ 1þ jð ÞrL/

1

rL

� �
 �
�Ui � �Ui�1

� �
; ð6aÞ
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UR ¼ �Uiþ1 �
1

4
1� jð Þ/ rRð Þ þ 1þ jð ÞrR/

1

rR

� �
 �
�Uiþ2 � �Uiþ1

� �
; ð6bÞ
where U is a property vector, rL ¼ �Uiþ1� �Ui
�Ui� �Ui�1

and rR ¼ �Uiþ1� �Ui
�Uiþ2� �Uiþ1

.

The bar means cell averaged value and is a TVD limiter which monitors the local gradient of property

and determines local slope under monotonic condition. The calculated value has third order spatial accu-

racy with j = 1/3.
As known well, if TVD limiter is symmetric, Eq. (6) is independent of j and simplified as follows:
UL ¼ �Ui þ 0:5/ rLð Þ �Ui � �Ui�1

� �
; ð7aÞ

UR ¼ �Uiþ1 � 0:5/ rRð Þ �Uiþ2 � �Uiþ1

� �
; ð7bÞ
where /(r) = r/(1/r).
In flows including physical discontinuities, / is definitely employed to yield monotonic distribution. Eqs.

(8)–(10) show well-known existing TVD limiters.

Minmod limiter:
/ rð Þ ¼ max 0;min r; 1ð Þð Þ: ð8Þ

van Leer limiter:
/ rð Þ ¼ r þ rj j
1þ rj j : ð9Þ
Superbee limiter:
/ rð Þ ¼ max 0;min 2r; 1ð Þ;min r; 2ð Þð Þ: ð10Þ

Here, we examine some characteristics of typical TVD limiters closely and discuss the influence of flow

physics on interpolation stage. It is assumed that a property distribution increases monotonically with

(oU/ox > 0 and o2U/ox2 > 0) as in Fig. 1. Other situations such as (oU/ox > 0 and o2U/ox2 < 0), (oU/

ox < 0 and o2U/ox2 > 0) or (oU/ox < 0 and o2U/ox2 < 0) can be treated in a symmetric manner. Defining
the variation at a cell-interface as DUiþ1

2
¼ �Uiþ1 � �Ui, the variation at a cell is determined by
UL ¼ �Ui þ 0:5DUji ¼ �Ui þ 0:5/ rLð ÞDUi�1
2
; DUji ¼ / rLð ÞDUi�1

2
; ð11aÞ

UR ¼ �Uiþ1 � 0:5DUjiþ1 ¼ �Uiþ1 � 0:5/ rRð ÞDUiþ3
2
; DUjiþ1 ¼ / rRð ÞDUiþ3

2
; ð11bÞ
1−iΦ
iΦ

1+iΦ

Fig. 1. Monotonically increasing property distribution.
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where rL ¼
DU

iþ1
2

DU
i�1

2

and rR ¼
DU

iþ1
2

DU
iþ3

2

. From the distribution of oU/ox > 0 and o2U/ox2 > 0, the condition of

DUi�1
2
< DUiþ1

2
< DUiþ3

2
is satisfied and the ratios of variation, rL and rR, have the following values:
rL ¼
DUiþ1

2

DUi�1
2

> 1; rR ¼
DUiþ1

2

DUiþ3
2

< 1 and rL <
1

rR
: ð12Þ
From the results of Part I, the interpolated values of minmod and superbee limiter satisfy the following

conditions:
�Ui < UL;min mod < Ureal;iþ1
2
< UR;min mod < �Uiþ1; ð13aÞ

�Ui < UR;sup erbee < Ureal;iþ1
2
< UL;sup erbee < �Uiþ1; ð1 < rL < 2Þ; ð13bÞ

�Ui ¼ UR;sup erbee < UL;sup erbee < �Uiþ1; ðrL > 2Þ;

where the subscript �real� indicates the exact physical value and the detailed is referred to Part I of the pres-

ent papers.

And we have

Minmod limiter:
DUji ¼ min DUi�1
2
;DUiþ1

2

� �
¼ DUi�1

2
; DUjiþ1 ¼ min DUiþ1

2
;DUiþ3

2

� �
¼ DUiþ1

2
: ð14Þ
Superbee limiter:
DUji ¼ min 2DUi�1
2
;DUiþ1

2

� �
; DUjiþ1 ¼ min 2DUiþ1

2
;DUiþ3

2

� �
: ð15aÞ
Especially in a rapidly varied region,
DUji ¼ 2DUi�1
2
; DUjiþ1 ¼ 2DUiþ1

2
; ð15bÞ
where rL > 2 and rR < 1
rL
< 0:5.

In discontinuous region, oU/ox needs to be calculated as large as possible since the slope of discontinuity

is infinite mathematically. That is, DUji and DUji+1 should be maximized. From this viewpoint, superbee

limiter is advantageous. In shock discontinuity, because of compression effect, shock profiles calculated

by MUSCL limiters are similar to each other. However, contact discontinuity in multi-space dimensions
is smeared much because of numerical dissipation. (See Figs. 17 and 18 of Part I or Figs. 11 and 12 of Part

II.) Thus, the resolution of contact discontinuities is very dependent on TVD limiters. Since rL > 2 and

rR < 0.5 generally belong to the head and tail of a numerical discontinuity, the slope of superbee limiter

is about twice steeper than minmod case as shown in Eqs. (14) and (15b). As a result, superbee limiter

can provide about four times and eight times grid point reduction effect in two- and three-dimensional

problems, which is shown in Figs. 17 and 18 of Part I.

On the other hand, in continuous region, we need optimal slope which can predict the real

physical value accurately. As seen from Eq. (13), the range of optimal slope lies between DUminmod

and DUsuperbee. Thus, unlike from discontinuous region, it cannot be said that superbee limiter is more

advantageous than minmod limiter in continuous region. More generally, it can be observed that stee-

per slope than the real physical slope yields the entropy increasing situation in isentropic compressible

flow and the entropy decreasing situation in isentropic expansion flow. In contrast, gentler slope exhib-

its exactly opposite behavior. We show this observation in case of isentropic expansion flow. The other

case can be shown similarly.
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The speed of sound in isentropic condition is written as follows:
op
oq

� �
s

¼ c2 ¼ c
p
q
¼ cRT ; ð16Þ
where R is a gas constant.

For isentropic flow, the equation of state can be written as
pq�c ¼ const: ð17Þ

Then, the following relation can be obtained.
preal;iþ1
2

preal;i

qreal;iþ1
2

qreal;i

� ��c

¼ 1;
preal;iþ1

2

qreal;iþ1
2

¼
preal;i
qreal;i

qreal;iþ1
2

qreal;i

� �c�1

: ð18Þ
Since fluid should move isentropically from a cell center point i to a cell-interface iþ 1
2
,

op
oq

				
real;i

¼ c
preal;i
qreal;i

¼ cRT real;i: ð19Þ

op
oq

				
real;iþ1

2

¼ cRT real;iþ1
2
¼ cRT real;i

qreal;iþ1
2

qreal;i

� �c�1

: ð20Þ
In expansion flow, oq/ox and oT/ox are negative, and from Eq. (13), density and temperature distribu-

tions are as follows:
qreal;i > qiþ1
2
;min mod > qreal;iþ1

2
> qiþ1

2
;sup erbee > qreal;iþ1; ð21Þ

T real;i > T iþ1
2
;min mod > T real;iþ1

2
> T iþ1

2
;sup erbee > T real;iþ1: ð22Þ
Since all processes from the cell center point i to i + 1 should be isentropic and T iþ1
2
;min mod is greater than

T real;iþ1
2
, minmod limiter always increases entropy in isentropic expansion flow as
op
oq

				
iþ1

2
;min mod

¼ cRT iþ1
2
;min mod > cRT real;iþ1

2
¼ op

oq

				
real;iþ1

2

; ð23Þ
or
op
oq

				
iþ1

2
;min mod

¼ cRT real;i

qiþ1
2
;min mod

qreal;i

� �c�1

> cRT real;i

qreal;iþ1
2

qreal;i

� �c�1

¼ op
oq

				
real;iþ1

2

; ð24Þ
where c = 1.4.
And similarly, superbee limiter always decreases entropy as
op
oq

				
iþ1

2
;sup erbee

¼ cRT iþ1
2
;sup erbee < cRT real;iþ1

2
¼ op

oq

				
real;iþ1

2

; ð25Þ
or
op
oq

				
iþ1

2
;sup erbee

¼ cRT real;i

qiþ1
2
;sup erbee

qreal;i

� �c�1

< cRT real;i

qreal;iþ1
2

qreal;i

� �c�1

¼ op
oq

				
real;iþ1

2

: ð26Þ
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Generally, even though entropy in evolution stage is always produced by numerical fluxes such as Roe-

type with entropy fix or AUSM-type schemes, the net change of entropy after iteration can be negative due

to the entropy decreasing mechanism at interpolation step. The test cases of expansion fan or vortex flow

using superbee limiter (Sections 4.3 and 4.4) would be a typical example.

Minmod limiter also decreases entropy in isentropic compression flow. However, we are more concerned
with expansion flow case since negative entropy variation in isentropic expansion flow can be sustained

without lower bound as computation continues. This can be seen in the test case of vortex flow. Physically,

entropy variation should be bounded between zero and the maximum positive value. The maximum posi-

tive value is determined by the governing conservation laws and the corresponding conservative discretiza-

tion, but the minimum value of zero is imposed by the second thermodynamic law which is not considered

explicitly in computations. Thus, in actual computations, entropy can be decreased without lower bound

which leads to the failure of calculations. On the other hand, entropy cannot grow continuously without

upper bound because the conservative discretized form of the governing equations precludes it by the action
of a shock wave.

Interpolation step is generally considered to be independent of flow physics and only related to mathe-

matics. Thus, up to now, the entropy condition has been considered only at evaluation stage. However, if

we use the same limiter both in isentropic compression and isentropic expansion flows, one of cases defi-

nitely brings negative entropy variation at interpolation step. In many applications, negative entropy var-

iation is not amplified and makes no serious problem. However, it can not be guaranteed in cases involving

strong expansion. Therefore, flow physics such as the entropy condition is critical both at evolution stage

and at interpolation stage. In the present paper, it is certified through the analysis of this section and lots of
numerical experiments in Section 4.

3.2. Higher order TVD interpolation

Judging from the result of the previous section, optimal slope should be able to preclude entropy

decreasing solution. The reason for the excessive variation of superbee limiter in continuous region is that

the slope is chosen without any consideration of curvature distribution. When second order MUSCL ap-

proach is applied, there is no concrete information on the variation of DUoptimalji, except for the monotonic
constraint of minðDUi�1

2
;DUiþ1

2
Þ < DUoptimalji < maxðDUi�1

2
;DUiþ1

2
Þ. It is intrinsically problematic in the sec-

ond order interpolation schemes. For example, superbee limiter always chooses the lager variation of two

candidates and minmod limiter always chooses the smaller one without considering real physical situation.

Let optimal variation be
DUoptimal

		
i
¼ bDUi�1

2
; ð27Þ
where b has to be specified. Improper choice of b would yield dissipative or entropy-violating result as in
case of minmod or superbee limiter. In order to determine b based on flow physics, more than third order

spatial interpolation is essential because the second order interpolation cannot reflect the curvature of U.

3.2.1. Third order interpolation with TVD limiting

Similar to reconstruction by the primitive function in ENO [11], third order interpolation which satisfies

the conservation requirement is applied. For equally spacing grid points, U is given by
U xð Þ ¼ ax2 þ bxþ c: ð28Þ

And, the cell-averaged value is (see Fig. 2)
1

Dx

Z mDx

m�1ð ÞDx
U xð Þdx ¼ �Uiþm m ¼ �1; 0; 1ð Þ: ð29Þ



0=x

x∆ x∆

x

ii-1 i+1

Fig. 2. Cell center point and cell-interface.
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Then, from Eqs. (28) and (29), the value of U at a cell-interface is written as follows:
Uiþ1
2
¼ 2 �Uiþ1 þ 5 �Ui � �Ui�1

6
¼ �Ui þ 0:5

DUi�1
2
þ 2DUiþ1

2

3
¼ �Ui þ 0:5b rið ÞDUi�1

2
; ð30Þ
where b ¼ 1þ2ri
3

and ri ¼
DU

iþ1
2

DU
i�1

2

.

To suppress oscillations across a discontinuity, TVD limiting condition of max(0,min(2,2r)) is applied to

Eq. (30) [10]. Then, the higher order interpolation filtered by TVD limiting can be written as
/ðrÞ ¼ max 0;min 2; 2r; bð Þð Þ: ð31Þ

Finally, left and right cell-interface values are obtained as follows:
UL ¼ �Ui þ 0:5/ rL;ið ÞDUi�1
2
¼ �Ui þ 0:5max 0;min 2; 2rL;i; bLð Þð ÞDUi�1

2
; ð32aÞ

UR ¼ �Uiþ1 � 0:5/ rR;iþ1ð ÞDUiþ3
2
¼ �Uiþ1 � 0:5max 0;min 2; 2rR;iþ1; bRð Þð ÞDUiþ3

2
: ð32bÞ
In Eq. (32), bL and bR are given as follows:
bL ¼ 1þ 2rL;i
3

; bR ¼ 1þ 2rR;iþ1

3
; ð33Þ
where rL;i ¼
DU

iþ1
2

DU
i�1

2

and rR;iþ1 ¼
DU

iþ1
2

DU
iþ3

2

.

3.2.2. Fifth order interpolation with TVD limiting

In a similar way, fifth order interpolation can be obtained as
U xð Þ ¼ ax4 þ bx3 þ cx2 þ dxþ e: ð34Þ

And, the interpolated value U at a cell-interface is given by
Uiþ1
2
¼ 2 �Ui�2 � 13 �Ui�1 þ 47 �Ui þ 27 �Uiþ1 � 3 �Uiþ2

60

¼ �Ui þ 0:5
�2DUi�3

2
þ 11DUi�1

2
þ 24DUiþ1

2
� 3DUiþ3

2

30
¼ �Ui þ 0:5b ri�1; ri; riþ1ð ÞDUi�1

2
; ð35Þ
where b ¼ �2=ri�1þ11þ24ri�3ririþ1

30
, ri�1 ¼

DU
i�1

2

DU
i�3

2

, ri ¼
DU

iþ1
2

DU
i�1

2

and riþ1 ¼
DU

iþ3
2

DU
iþ1

2

. It is noted that b of fifth order interpo-

lation is the function of ri�1, ri and ri+1.

Finally, the fifth order interpolation scheme filtered by TVD limiting can be written as follows:
UL ¼ �Ui þ 0:5/ rLð ÞDUi�1
2
¼ �Ui þ 0:5max 0;min 2; 2rL;i; bLð Þð ÞDUi�1

2
; ð36aÞ
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UR ¼ �Uiþ1 � 0:5/ rRð ÞDUiþ3
2
¼ �Uiþ1 � 0:5max 0;min 2; 2rR;iþ1; bRð Þð ÞDUiþ3

2
: ð36bÞ
In Eq. (36), bL and bR is given as follows:
bL ¼ �2=rL;i�1 þ 11þ 24rL;i � 3rL;irL;iþ1

30
; bR ¼ �2=rR;iþ2 þ 11þ 24rR;iþ1 � 3rR;iþ1rR;i

30
; ð37Þ
where rL;i�1 ¼
DU

i�1
2

DU
i�3

2

, rL;i ¼
DU

iþ1
2

DU
i�1

2

, rL;iþ1 ¼
DU

iþ3
2

DU
iþ1

2

and rR;iþ2 ¼
DU

iþ3
2

DU
iþ5

2

, rR;iþ1 ¼
DU

iþ1
2

DU
iþ3

2

, rR;i ¼
DU

i�1
2

DU
iþ1

2

.

3.3. Development of multi-dimensional limiting process (MLP)

Since the late 1970s, numerous ways to control oscillations have been studied and several

limiting concepts have been proposed. Most representatives would be TVD, TVB and ENO. In case

of scalar convection equation, rigorous mathematical analysis unveils their good characteristics. How-
ever, it looks very difficult to prove similar behaviors in non-linear systems of equations. Thus, the suc-

cessful application of these approaches to multi-dimensional systems is largely based on some

linearization step and some practical experience. Even though they can be applied successfully in many

cases, some weakness is still observed in calculating shock discontinuity in multi-dimensional flow.

Therefore, it is believed that the previous limiting concept based on one-dimensional flow physics

has to be improved and a new limiting process has to be introduced based on multi-dimensional flow

physics.

One of the fundamental difficulties in handling multi-dimensional problems is that it is difficult to define
monotonic characteristic [19] and especially, the definition of monotonic distribution is ambiguous near a

saddle point. In addition, Goodman and LeVeque [20] showed TVD scheme in two space dimensions can

not be more than first order accurate. Thus, it looks nearly impossible to develop an oscillation control

scheme with global higher order accuracy in multi-space dimensions. However, if we focus on more specific

issue, the limitation of the previous oscillation control concept can be improved. For that reason, Spekreijse

defined his own version of multi-dimensional monotonic condition, and derived a second order monotone

upwind scheme which satisfies his multi-dimensional monotonic condition in steady case. The monotone

scheme was analyzed based on a non-linear scalar equation [21]. Although it shows good performances in
scalar convection equation, it does not seem to be good enough to control oscillations in multi-dimensional

shock discontinuity and requires some unknown parameter.

In the present paper, we mainly focus on oscillation control across a multi-dimensional shock disconti-

nuity to sidestep the difficulty in defining multi-dimensional monotonic distribution exactly. Then, a multi-

dimensional limiting function is derived using nine point stencil as in Fig. 3. It is based on oscillation

control concept because this is more flexible to deal with multi-dimensional situation than strict monotonic

concept. TVD is adopted for that purpose.
3.3.1. Derivation of a multi-dimensional limiting function

One-dimensional limiting condition using TVD constraint can be written as follows [10].
0 6 /ðrÞ 6 minð2r; 2Þ: ð38Þ

Since the extension of Eq. (38) in a dimensional splitting manner is insufficient to prevent oscillations in

multi-dimensional flow, it needs to be modified and/or extended with appropriate consideration of multi-

dimensional situation. From Eqs. (38) and (7), the property at a cell-interface satisfies the following
distribution.
�Ui�1 6 Ui�1
2
6 �Ui; �Ui 6 Uiþ1

2
6 �Uiþ1: ð39aÞ



),1( ji +

)1,1( ++ ji)1,( +ji)1,1( +− ji

),1( ji −

),( ji

)1,1( −+ ji)1,( −ji)1,1( −− ji

Fig. 3. Neighboring cells to derive the multi-dimensional limiting function.
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Thus, the dimensional splitting extension of Eq. (39a) is
�Ui�1;j 6 Ui�1
2
;j 6

�Ui;j; �Ui;j 6 Uiþ1
2
;j 6

�Uiþ1;j; �Ui;j�1 6 Ui;j�1
2
6 �Ui;j; �Ui;j 6 Ui;jþ1

2
6 �Ui;jþ1: ð39bÞ
It is noted that Eq. (39b) does not possess any information on the property distribution at cell vertex points,

which would be essential when property gradient is not aligned with grid lines. Thus, as an extended con-

dition of Eq. (39) which includes the missing information, we require Eq. (40) on compact stencil in Fig. 3.
�U
min

neighbor < U < �U
max

neighbor: ð40Þ

Since Eq. (38) does not automatically imply Eq. (40), (38) as well as Eq. (40) has to be satisfied to control
oscillations in multi-space dimensions. In order to realize Eq. (40), the values at vertex points,U2, andU4 in

Fig. 4, are required to satisfy the following condition:
min �Ui;j; �Uiþ1;j; �Ui;j�1; �Uiþ1;j�1

� �
< U1 < max �Ui;j; �Uiþ1;j; �Ui;j�1; �Uiþ1;j�1

� �
; ð41aÞ

min �Ui;j; �Uiþ1;j; �Ui;jþ1; �Uiþ1;jþ1

� �
< U2 < max �Ui;j; �Uiþ1;j; �Ui;jþ1; �Uiþ1;jþ1

� �
; ð41bÞ

min �Ui;j; �Ui�1;j; �Ui;jþ1; �Ui�1;jþ1

� �
< U3 < max �Ui;j; �Ui�1;j; �Ui;jþ1; �Ui�1;jþ1

� �
; ð41cÞ

min �Ui;j; �Ui�1;j; �Ui;j�1; �Ui�1;j�1

� �
< U4 < max �Ui;j; �Ui�1;j; �Ui;j�1; �Ui�1;j�1

� �
: ð41dÞ
And, a multi-dimensional limiting function which is compatible with Eq. (38) and at the same time yield the

distribution of Eq. (41) has to be formulated.

If discontinuity is inclined by hj as in Fig. 4 and 0 < hj < 90�, Eq. (41) becomes

�Ui;j�1 < U1 < �Uiþ1;j; ð42aÞ

�Ui;j < U2 < �Uiþ1;jþ1; ð42bÞ

�Ui�1;j < U3 < �Ui;jþ1; ð42cÞ

�Ui�1;j�1 < U4 < �Ui;j: ð42dÞ



2Φ

1, +jiΦ

ji ,Φ ji ,1+Φ

1, −jiΦ

ji ,1−Φ

1Φ

3Φ

η

ξ

+
ξ∆Φ

+
η∆Φ

4Φ

jθ

iθ

(i, j+1/2) cell-interface 

(i+1/2, j) cell-interface 

Fig. 4. Distributions of cell averaged values and cell vertex values.
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The case of 90� < hj < 180� is symmetric with respect to g = 0 line, the case of 180� < hj < 270� is the same

as the case of 0� < hj < 90� and the case of 270� < hj < 360� is symmetric with respect to n = 0 line. Now, let

us consider the values at four vertex points which are evaluated as
U1 ¼ �Ui;j þ DU�
g þ DUþ

n ; ð43aÞ

U2 ¼ �Ui;j þ DUþ
g þ DUþ

n ¼ �Ui;j þ 1þ tan ~hj

� �
DUþ

g ; ð43bÞ

U3 ¼ �Ui;j þ DUþ
g þ DU�

n ; ð43cÞ

U4 ¼ �Ui;j þ DU�
g þ DU�

n ¼ �Ui;j þ 1þ tan ~hj

� �
DU�

g ; ð43dÞ
where ~h is defined as tan ~hj ¼
DUþ

n

DUþ
g
in Fig. 4. DU�

n;g are the variations from center point to cell-interface as in

Fig. 5. Thus, DU± has an opposite sign with each other: when 0 < hj < 90�, DU+ is positive and DU� is neg-

ative and tan ~h > 0.

From Eq. (39), the interpolated value Ui;j�1
2
and Ui�1

2
;j should satisfy the following conditions.
�Ui�1;j 6 Ui�1
2
;j 6

�Ui;j 6 Uiþ1
2
;j 6

�Uiþ1;j; ð44aÞ

�Ui;j�1 6 Ui;j�1
2
6 �Ui;j 6 Ui;jþ1

2
6 �Ui;jþ1; ð44bÞ
where Ui�1
2
;j ¼ �Ui;j þ DU�

n and Ui;j�1
2
¼ �Ui;j þ DU�

g . From Eqs. (43) and (44), is always greater than �Ui;j�1

and less than �Uiþ1;j because DU+ is positive and DU� is negative:
�Ui;j�1 < U 1 < �Ui;j þ DU� þ DUþ ¼ U1 < U 1 < �Uiþ1;j: ð45aÞ
i;j�
2 g n iþ

2
;j
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Fig. 5. Definition of property variations within a cell.
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Similarly, U3 is always greater than �Ui�1;j and less than �Ui;jþ1
�Ui�1;j < Ui�1
2
;j <

�Ui;j þ DU�
n þ DUþ

g ¼ U3 < Ui;jþ1
2
< �Ui;jþ1: ð45bÞ
Thus, and U3 always satisfy Eqs. (42a) and (42c).
Now, let us check the cases of U2 and U4. In case of U2, from �Ui;j < U2 ¼ �Ui;j þ 1þ tan ~hj

� �
DUþ

g , Eq.

(42b) is satisfied only if U2 would be less than �Uiþ1;jþ1.
U2 ¼ �Ui;j þ 1þ tan ~hj

� �
DUþ

g 6 �Uiþ1;jþ1 ¼ �Ui;j þ DUi;jþ1
2
þ DUiþ1

2
;jþ1: ð46Þ
And
DUiþ1
2
;jþ1 ¼ tan �hjþ1DUi;jþ3

2
¼ tan �hjþ1

DUi;jþ3
2

DUi;jþ1
2

DUi;jþ1
2
¼ tan �hjþ1

rR;jþ1

DUi;jþ1
2
; ð47Þ
where �h is defined as tan �hjþ1 ¼
DU

iþ1
2
;jþ1

DU
i;jþ3

2

and rR;jþ1 ¼
DU

i;jþ1
2

DU
i;jþ3

2

.

Thus, from Eqs. (46) and (47),
DUþ
g 6

1þ tan �hjþ1

rR;jþ1

� �
1þ tan ~hj

� �DUi;jþ1
2
: ð48Þ
And, from Eqs. (7) and (38), the maximum variation of DUþ
g is determined as
DUþ
g ¼ DUi;j�1

2
rL;j > 1
� �

; DUþ
g ¼ DUi;jþ1

2
0 < rL;j < 1
� �

; ð49Þ
where rL;j ¼ 1
rR;j

¼
DU

i;jþ1
2

DU
i;j�1

2

. Thus, by limiting the maximum variation of DUþ
g , all of the Eq. (42) can be realized

as follows:

When rL,j > 1,

The maximum variation is modified as DUþ
g ¼ 0:5aDUi;j�1

2
instead of DUþ

g ¼ DUi;j�1
2
. Then, from Eq.

(48), we can determine the value of a(1 6 a 6 2) which satisfies Eq. (42b).
0:5
a
rL;j

DUi;jþ1
2
6

1þ tan �hjþ1

rR;jþ1

� �
1þ tan ~hj

� �DUi;jþ1
2
; ð50aÞ
where DUþ
g ¼ 0:5aDUi;j�1

2
¼ 0:5 a

rL;j
DUi;jþ1

2
ð1 6 a 6 2Þ.
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Thus, we have
1 6 a 6 min 2;
2rL;j 1þ tan �hjþ1

rR;jþ1

� �
1þ tan ~hj

� �
2
4

3
5: ð50bÞ
When 0 < rL,j < 1,

Similarly, the maximum variation is modified as DUþ
g ¼ 0:5aDUi;jþ1

2
instead of DUþ

g ¼ DUi;jþ1
2
. By insert-

ing DUþ
g 6 0:5aDUi;jþ1

2
(1 6 a 6 2) into Eq. (48),
0:5aDUi;jþ1
2
6

1þ tan �hjþ1

rR;jþ1

� �
1þ tan ~hj

� �DUi;jþ1
2
: ð51aÞ
Then, we obtain
1 6 a 6 min 2;
2 1þ tan �hjþ1

rR;jþ1

� �
1þ tan ~hj

� �
2
4

3
5: ð51bÞ
Eqs. (50b) and (51b) always make U2 less than �Uiþ1;jþ1, and Eq. (42b) is realized.

Next, let us consider the case of rR,j + 1 < 0 in Eq. (48). From Eq. (47), it is the case where �Uiþ1;jþ1 is less
than �Ui;jþ1. If the case of rR,j + 1 < 0 is ignored, a is restricted too much and a computed solution can be

undesirably diffusive. Thus, the condition, that U2 should be less than �Ui;jþ1 instead of �Uiþ1;jþ1 when

rR,j + 1 < 0, is introduced.

When rR,j + 1 < 0, we require
U2 ¼ �Ui;j þ 1þ tan ~hj

� �
DUþ

g 6 �Ui;jþ1 ¼ �Ui;j þ DUi;jþ1
2
: ð52aÞ
Then,
DUþ
g 6

1

1þ tan ~hj

� �DUi;jþ1
2
: ð52bÞ
Similar to the above procedure, the range of the restriction coefficient a is derived for the following cases.

When rL,j > 1 and rR,j + 1 < 0,
1 6 a 6 min 2;
2rL;j

1þ tan ~hj

� �
2
4

3
5: ð53Þ
When 0 < rL,j < 1 and rR,j + 1 < 0,
1 6 a 6
2

1þ tan ~hj

� � : ð54Þ
Finally, by combining Eqs. (50b), (51b), (53) and (54), the range of a can be formulated as follows:
1 6 a 6 min 2;
2max 1; rL;j

� �
1þmax 0;

tan �hjþ1

rR;jþ1

� �� �
1þ tan ~hj

� �
2
4

3
5: ð55Þ
Eq. (55) expresses the information of the restriction coefficient a for multi-dimensional monotonicity.

If we choose the maximum value of a, the multi-dimensional limiting function is obtained as

follows:
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The value of a contains two angles related to property variation, ~h and �h, defined at each cell. Although ~h
and �h are defined separately for the purpose of rigor, the difference is negligible in real computations, which

will be shown well through test problems in Section 4. Thus, for computational efficiency we introduce the

representative angle, h. The analysis on the relation among the three angles (~h, �h, h) is explained in Section

3.5. From the definition of ~h and �h,
tan ~hj ¼
DUþ

n

DUþ
g

and tan �hj ¼
DUiþ1

2
;j

DUi;jþ1
2

; ð56Þ
where 0� < hj < 90�. These are simply the ratios of variations in the n and g directions defined at each cell.

Similarly, we define the following representative ratio of variation as
tan hj ¼
�Uiþ1;j � �Ui�1;j

� �
�Ui;jþ1 � �Ui;j�1

� � > 0: ð57Þ
Fig. 6 show the definitions of three angles. When 90� < hj < 180�, the maximum value is �Ui�1;jþ1 in Fig. 4

with DU�
n > 0, DUþ

g > 0. Thus,
tan ~hj ¼
DU�

n

DUþ
g

> 0: ð58Þ
Fig. 6. Definitions of three angles.
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In this case, tan hj is written as follows:
tan hj ¼ �
�Uiþ1;j � �Ui�1;j

� �
�Ui;jþ1 � �Ui;j�1

� � > 0: ð59Þ
The cases of 180� < hj < 270� and 270� < hj < 360� can be handled in the same way. Finally, we have the

following expression for the representative angle
tan hj ¼
�Uiþ1;j � �Ui�1;j

� �
�Ui;jþ1 � �Ui;j�1

� �
					

					: ð60Þ
As a consequence, the one-dimensional limiting condition and the multi-dimensional limiting function are
compared as follows:

One-dimensional limiting condition:
max 0;min 2r; 2ð Þð Þ: ð61Þ

Multi-dimensional limiting function:
max 0;min ar; að Þð Þ: ð62Þ

U4 requires the same condition.

3.3.2. General form of multi-dimensional limiting process (MLP)

With the multi-dimensional limiting function of Eq. (62), a new family of interpolation scheme to control

oscillations in a multi-dimensional flow can be developed.
UL ¼ �Ui þ 0:5/ rL;i; aL; bLð ÞDUi�1
2
¼ �Ui þ 0:5max 0;min aLrL;i; aL; bLð Þð ÞDUi�1

2
; ð63aÞ

UR ¼ �Uiþ1 � 0:5/ rR;iþ1; aR; bRð ÞDUiþ3
2
¼ �Uiþ1 � 0:5max 0;min aRrR;iþ1; aR; bRð Þð ÞDUiþ3

2
: ð63bÞ
The interpolated values of UL and UR are based on the final form of MLP. By inserting Eq. (63) into Eqs.

(4) and (5), MLP combined with M-AUSMPW+ are constructed. Other numerical flux can be employed

similarly.

Values of aL,R and bL,R in Eq. (63) is summarized as follows:

Along the n -direction,
aL ¼ g
2max 1; rL;ið Þ 1þmax 0; tan hiþ1

rR;iþ1

� �� �
1þ tan hi

2
4

3
5; aR ¼ g

2max 1; rR;iþ1ð Þ 1þmax 0; tan hi
rL;i

� �� �
1þ tan hiþ1

2
4

3
5;

ð64aÞ
where rL;i ¼
DU

iþ1
2
;j

DU
i�1

2
;j
, rR;iþ1 ¼

DU
iþ1

2
;j

DU
iþ3

2
;j
and g(x) = max(1,min(2,x)).

Along the g-direction,
aL ¼ g
2maxð1; rL;jÞ 1þmax 0;

tan hjþ1

rR;jþ1

� �� �
1þ tan hj

2
4

3
5; aR ¼ g

2maxð1; rR;jþ1Þ 1þmax 0;
tan hj
rL;j

� �� �
1þ tan hjþ1

2
4

3
5; ð64bÞ
where rL;j ¼
DU

i;jþ1
2

DU
i;j�1

2

, rR;jþ1 ¼
DU

i;jþ1
2

DU
i;jþ3

2

and
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tan hi ¼
�Ui;jþ1 � �Ui;j�1

� �
�Uiþ1;j � �Ui�1;j

� �
					

					; tan hj ¼
�Uiþ1;j � �Ui�1;j

� �
�Ui;jþ1 � �Ui;j�1

� �
					

					:

Combining Eqs. (63) and (64) with Eqs. (33) and (37) for b, we finally obtain MLP3, MLP5.

MLP with third order interpolation (MLP3):
bL ¼ 1þ 2rL;i
3

; bR ¼ 1þ 2rR;iþ1

3
: ð65aÞ
MLP with fifth order interpolation (MLP5):
bL ¼ �2=rL;i�1 þ 11þ 24rL;i � 3rL;irL;iþ1

30
; ð65bÞ

bR ¼ �2=rR;iþ2 þ 11þ 24rR;iþ1 � 3rR;iþ1rR;i

30
: ð65cÞ
3.4. Comparison between MLP and TVD limiters

To compare MLP with several TVD limiters, all of the limiters are re-written by the b parameter form as
/ ¼ max 0;minðb1r; 1Þ;minðr; b2Þð Þ; ð66Þ

with 1 < b1, b2 < 2.

Let us assume some interpolation function f(r) is given within second order TVD region. When 0 < r < 1,

f(r) should be within the region A in Fig. 7.
r < f ðrÞ < 2r and f ðrÞ < 1: ð67Þ
r1=r

1=φ

2=φ

B

A

r2=φ

r=φ

Fig. 7. TVD limiter region.
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In the b limiter form, it corresponds to
/ ¼ ð0;minðb1r; 1Þ; rÞ ¼ minðb1r; 1Þ: ð68Þ

Then, by defining, b1 ¼ minð2;maxðf ðrÞr ; 1ÞÞ, Eqs. (67) and (68) are equivalent.

When 1 < r, f(r) lies within the region B in Fig. 7.
1 < f ðrÞ < 2 and f ðrÞ < r: ð69Þ

And in the b limiter form, it is
/ ¼ max 0; 1;min r; b2ð Þð Þ ¼ min r; b2ð Þ: ð70Þ

Then, Eqs. (69) and (70) are equivalent with b2 = min(2, max(f(r),1)). By combining Eqs. (68) and (70), the

b limiter form with f(r) can be expressed as follows:
/ ¼ max 0;minðb1r; 1Þ;minðr; b2Þð Þ; ð71Þ

where b1 ¼ minð2;maxðf ðrÞr ; 1ÞÞ and b2 = min(2,max(f(r),1)).

Thus, if the multi-dimensional limiting function is applied to Eq. (72), we obtain the multi-dimensional b
limiter form as
/ ¼ max 0;minðb1r; 1Þ;minðr; b2Þð Þ; ð72Þ

where b1 ¼ minða;maxðf ðrÞr ; 1ÞÞ and b2 = min(a,max(f(r),1)).

Exploiting Eq. (72), TVD limiters with the multi-dimensional limiting function can be derived as follows:

MLP with minmod limiter:
/ ¼ maxð0;minðb1r; 1Þ;minðr; b2ÞÞ; ð73aÞ

where b1 = b2 = 1. It is seen that the multi-dimensional minmod limiter is exactly the same as the original

minmod limiter of Eq. (8). It means that the original minmod limiter maintains monotonic property in multi-

dimensional flows.

MLP with van Leer limiter:
/ ¼ max 0;min a; ar; f ðrÞð Þ½ �; ð73bÞ

where f rð Þ ¼ 2r

1þr.

MLP with superbee limiter:
/ ¼ max 0;minðar; 1Þ;minðr; aÞð Þ: ð73cÞ

MLP with third order interpolation (MLP3):
/ ¼ max 0;min a; ar; f ðrÞð Þ½ �; ð73dÞ

where f ðrÞ ¼ 1þ2r

3
.

MLP with fifth order interpolation (MLP5):
/ ¼ max 0;min a; ar; f ðrÞð Þ½ �; ð73eÞ

where f ðrÞ ¼ �2=ri�1þ11þ24ri�3ririþ1

30
.

Fig. 8 shows several limiting functions including minmod, van Leer, superbee limiter and third order

interpolation with TVD limiting. Those are the results without imposing the multi-dimensional effect,

i.e., a = 2. Fig. 9 is the region of MLP-van Leer, MLP-superbee limiter and MLP3. It is shown that
MLP region is completely within the one-dimensional TVD limiting condition because the value of a is al-

ways between one and two.

Although a in the multi-dimensional limiting function is the complicated function of rL, rR, hi or j and

hi + 1 or j + 1, it can be roughly compared with TVD limiters by simplifying the property distribution as
1
rR
� rL � r and hi � hi+1 on regular mesh. Then, the value of becomes
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When 0 < 1
rR
< rL < 1,
1 < a � 2 1þ r tan hð Þ
1þ tan h

< 2: ð74aÞ
When 1
rR
> rL > 1,
a � max 2;
2r 1þ r tan hð Þ

1þ tan h

� �
¼ 2: ð74bÞ
In discontinuous region of (r � 1), when h is zero, i.e., the local one-dimensional assumption is readily

acceptable, the value of becomes two irrespective of r, which is identical to the range of superbee limiter.

When h ! 45�, the value of becomes one, which is identical to the range of minmod limiter. As a result, the

excessively steep slope based on one-dimensional flow assumption is restricted and oscillations across a

multi-dimensional discontinuity are controlled. On the other hand, in discontinuous region of (r � 1),

the value of becomes two regardless of h and r.

In smooth region, r is nearly one, i.e., 1
rR
� rL � 1 and a becomes nearly two regardless of h. Since

f(r) � 1(r � 1), the limiter function reduces to
/ � max 0;min 2; 2r; fð Þ½ � ¼ f : ð75Þ

This indicates that MLP3 and MLP5 can recover the fully third and fifth order spatial accuracy in smooth

region except for local extrema.
3.5. Relation among gradient angles h, �h and ~h

In the derivation of a, two angles, �h and ~h are involved. �h is the ratio of the variation in the g direction to

the variation in the n direction, i.e., �Ui;jþ1 � �Ui;j and �Uiþ1;j � �Ui;j. And, ~h is the angle based on the variation

of Uiþ1
2
;j � �Ui;j and Ui;jþ1

2
� �Ui;j, where Uiþ1

2
;j and Ui;jþ1

2
are cell-interface values. In real computations, these

angles are replaced by the representative angle of h is introduced for computational efficiency.

Let us consider 0 < h < 90�. Then, on equal spacing regular mesh, three angles are written as follows:
h ¼ tan�1
�Ui;jþ1 � �Ui;j�1

�Uiþ1;j � �Ui�1;j

� �
; ð76aÞ

�h ¼ tan�1
�Ui;jþ1 � �Ui;j

�Uiþ1;j � �Ui;j

� �
; ð76bÞ

~h ¼ tan�1
Ui;jþ1

2
� �Ui;j

Uiþ1
2
;j � �Ui;j

 !
¼ tan�1

/ rL;j
� �

/ rL;ið Þ
�Ui;j � �Ui;j�1

� �
�Ui;j � �Ui�1;j

� �
 !

; ð76cÞ
where rL;i ¼
�Uiþ1;j� �Ui;j

�Ui;j� �Ui�1;j
, rL;j ¼

�Ui;jþ1� �Ui;j

�Ui;j� �Ui;j�1
.

In smooth region, i.e., rL,i � 1 and rL,j � 1, /(rL,i) � /(rL,j) � 1 and �Uiþ1;j � �Ui;j � �Ui;j � �Ui�1;j �
0:5ð �Uiþ1;j � �Ui�1;jÞ. Also, �Ui;jþ1 � �Ui;j � �Ui;j � �Ui;j�1 � 0:5ð �Ui;jþ1 � �Ui;j�1Þ. Then, three angles are equiva-

lent with one another (h � ~h � �h).
In discontinuous region, let us consider the case of one planar wave. Then,
rL;i ¼ rL;j and / rL;ið Þ ¼ / rL;j
� �

; ð77aÞ

�Uiþ1;j � �Ui�1;j ¼ 1þ 1

rL;i

� �
�Uiþ1;j � �Ui;j

� �
¼ 1þ rL;ið Þ �Ui;j � �Ui�1;j

� �
; ð77bÞ
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�Ui;jþ1 � �Ui;j�1 ¼ 1þ 1

rL;j

� �
�Ui;jþ1 � �Ui;j

� �
¼ 1þ rL;j
� �

�Ui;j � �Ui;j�1

� �
: ð77cÞ
As a result, all the three angles are equal ðh ¼ ~h ¼ �hÞ.
In other complicated flows, there may be some minor difference among three angles. Through numerous

test cases, however, the difference turns out to be negligible in determining a. Even for a shock interaction

problem, MLP is shown to control oscillations robustly, which will be verified in Section 4.

3.6. Efficiency and convergence characteristics

Table 1 shows efficiency comparison between MLP and conventional TVD limiter. Considering interpo-

lation routine only (see Table 1a), MLP takes about 3 times more expensive than van Leer limiter. This is

mainly due to additional computational cost for a and tan h in Eq. (64). However, MLP is much more effi-

cient than popular flux function routine. Thus, as shown in Table 1b, MLP with numerical flux takes about

1.67 times more expensive than TVD schemes. In actual computations, depending on the choice of time

integration scheme, the overall elapsed time ratio is about 1.15 only (see Table 1c) which is the result com-
bined with AF-ADI time integration. Therefore, MLP is computationally very competitive to conventional

TVD approach.

Computational efficiency is one of the advantages of MLP compared with other higher order interpola-

tion schemes such as ENO-type schemes. It is generally known that ENO/WENO requires much more com-

putational cost than conventional TVD approach. This is because variable stencil is adopted to prevent

oscillatory behaviors and occasionally ENO/WENO requires the process to transform primitive or conser-

vative variables into characteristic variables. On the other hand, MLP is very simple to be implemented

because it uses the fixed stencil and controls oscillations by simple limiting function. Moreover, MLP is very
efficient since its convergence characteristics are especially robust in problems including multi-dimensional

physical discontinuities, which will be shown in Section 4. This is very desirable in real applications since it
1a

ncy comparison of MLP (interpolation only)

olation only van Leer limiter MLP3 MLP5

imeVAN 1 2.47 2.96

1b

ncy comparison of MLP (interpolation and flux function)

olation + flux function van Leer limiter + Roe�s FDS MLP3 + Roe�s FDS MLP5 + Roe�s FDS MLP5 + M-AUSMPW+

imeVAN + ROE 1 1.50 1.67 2.05

1c

ncy comparison of MLP (overall elapsed time)

ll time van Leer limiter +

Roe�s FDS + AF-ADI

MLP3 + Roe�s FDS

+ AF-ADI

MLP5 + Roe�s FDS

+ AF-ADI

MLP5 + M-AUSMPW+

+ AF-ADI

imeVAN + ROE 1 1.12 1.15 1.24
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can reduce the overall analysis and/or design time. Even in unsteady cases, robust convergence reduces

overall computational cost if dual time stepping method is employed.
4. Numerical results

In order to investigate the actual performance of MLP, several test cases are carried out. They include

oblique stationary contact discontinuity, shock wave reflection, expansion fan, vortex flow, shock-wave/

boundary-layer interaction, double Mach reflection, shock wave/vortex flow interaction and viscous shock
tube problems. Computed results by M-AUSMPW+ (Part I) combined with MLP (Part II) are compared

with AUSMPW+ or Roe�s FDS with TVD limiter. Occasionally, Roe�s FDS with MLP and several TVD

limiters are also compared. Since MLP is just an interpolation method independent of spatial discretization

schemes, any numerical flux function can be essentially adopted. AF-ADI or LU-SGS is used for the time

integration. Dual time stepping method or third order TVD Runge–Kutta time integration [14] is used for

unsteady calculation.

For boundary conditions, free stream values are specified as inflow conditions, and extrapolation from

the inner computational domain is used for outflow condition. At wall, no-slip condition is specified for
velocity, and adiabatic or constant condition is used for wall temperature.

4.1. Oblique stationary contact discontinuity

In order to examine the influence of numerical dissipation when discontinuity is inclined to a cell-

interface, oblique contact discontinuity is considered. This test case is also closely related to the accuracy

of boundary layer, separated flow or vortex flow.

The initial conditions are as follows:
qL; uL; vL; pLð Þ ¼ 2:0; 0:1; 0:1 tan h; 0:714ð Þ and qR; uR; vR; pRð Þ ¼ 1:0; 0:1; 0:1 tan h; 0:714ð Þ:

The initial distribution is inclined by h degree angle to a cell-interface as shown in Fig. 10. The grid sys-

tem is 60 · 50. Boundary values along the left end and the bottom are fixed as initial conditions. Other sides

are extrapolated from the inside.

Fig. 11 shows the comparison of density distribution with 45� angle and Fig. 12 is the case for 60� angle.
The results of MLP3 and MLP5 are combined with M-AUSMPW+, and second order TVD schemes with
various limiters is calculated by the original Roe�s FDS. TVD with van Leer limiter is so diffusive that it

seems to be inappropriate in pure multi-dimensional flows. On the other hand, MLP3 and MLP5 yield al-

most the same results as MLP-supeprbee limiter, which gives the steepest result within the region of the

multi-dimensional limiting function of Eq. (62). Although superbee limiter can provide monotonic and a

most accurate contact discontinuity as shown in Fig. 11, it can not guarantee the same performance in other

cases, especially non-linear system equations. Density distribution using van Leer limiter is captured

through 10 cells. MLP with M-AUSMPW+ yields the same result with six cell-interfaces.

4.2. Double shock refection

The free stream Mach number is two and the deflection angle of the lower wall is 15� angle. The grid

system is 100 · 30. Slip boundary condition is applied on the upper and lower walls, and all physical values

at the exit are extrapolated. This test problem shows the advantages of MLP clearly in terms of monoto-

nicity and convergence.

Figs. 13 and 14 are the comparisons of pressure distribution of superbee, MLP-superbee limiters, MLP3

and MLP5. The original superbee limiters exhibits pressure oscillations across the oblique shock and does
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Fig. 10. Discontinuity inclined to a cell-interface by 45� angle.
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not maintain a monotonic profile as shown in Figs. 15 and 16. The result by van Leer limiter also shows sim-

ilar overshoot phenomenon. On the other hand, MLP-superbee limiter provides the best result in maintain-

ing a monotonic shock distribution. MLP3 and MLP5 also do not show overshoot phenomenon and yield
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Fig. 13. Comparison of pressure contours (superbee and MLP-superbee limiters).
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almost the same accuracy as MLP-superbee limiter. At a glance, MLP-superbee limiter gives the best mono-

tonic result across physical discontinuities. However, it shares the same defect of the original superbee limiter

in a sense that entropy decreases in a continuous expansion flow, which is examined in the next test case.
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Fig. 14. Comparison of pressure contours (MLP3 and MLP5).
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Fig. 17 shows the error history. CFL number is 3.0 and LU-SGS is used for time integration. Even if the

test case is simple, superbee and van Leer limiters are never converged due to oscillatory behavior across the

oblique shock discontinuity. On the other hand, MLP-superbee limiter, MLP3 and MLP5 show good con-

vergence characteristics.

4.3. Expansion fan

In this test problem, we examine entropy variation depending on several interpolation schemes. As ex-

plained in Section 3.1, the slope of physical distribution is always between the slopes calculated by minmod

and superbee limiter. The most important is whether we can estimate the optimal slope or not.

From the analysis of Section 3.1, it is obtained that the slope obtained by minmod limiter is gentler than

the physical slope so that a flow becomes more diffusive, i.e., entropy increases excessively, and the slope by

superbee limiter is steeper so that entropy decreases unacceptably. Here, it is validated numerically.
The free stream Mach number is two and the wall is deflected by 45� angle. The grid system is 110 · 80.

Slip wall boundary condition is applied and all physical values at the exit are extrapolated. Figs. 18 and 19

are the pressure contour and entropy distribution along a streamline. Entropy for a calorically perfect gas is

obtained as follows and the value of s/R is plotted in Fig. 19.
s ¼ c
c � 1

R ln T � R ln P þ s0: ð78Þ
The entropy of superbee and MLP-superbee limiter is certainly decreasing while MLP3 and MLP5 give

slightly positive entropy variations. As expected, TVD with van Leer limiter yields the largest entropy in-

crease and MLP5 gives the smallest. In this test case, the negative entropy variation due to superbee or

MLP-superbee limiter is somewhat bounded and thus it does not cause severe stability problem. However,

other cases such as a vortex flow, may lead to serious numerical instability in some problem, which is shown

in the next section.
Fig. 20 shows the error history. The results by superbee and MLP-superbee limiter are not converged

sufficiently. On the other hand, MLP3 and MLP5 show good convergence characteristics. This is consistent

with the entropy variation of each scheme in Fig. 19.
Expansion fan

(Pressure contour)

streamline

Fig. 18. Pressure contour of expansion fan.
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4.4. Stationary vortex flow

It is relatively amenable to improve the accuracy of problems involving physical discontinuities only

since the steeper variation always leads to the better result. On the other hand, in continuous flow, optimal

variation is definitely necessary. To improve the accuracy of a vortex flow is one of the main objectives in
the present paper since it is a good example of multi-dimensional continuous flows. If MLP is very prospec-

tive interpolation scheme both in discontinuous and continuous region, it should provide substantially

enhanced results in vortex flows.

A vortex flow is a pure multi-dimensional phenomenon, characterized by the existence of negative pres-

sure gradient toward core and the curved flow contours. A flow-aligned grid system is almost impossible in

general cases and computed results are very sensitive to the choice of an interpolation and/or numerical

fluxes.

Fig. 21 shows the typical computed result. It is Thomson–Rankine vortex model which is composed of
the free vortex outside the core and the forced vortex inside.

(a) Free vortex (outside the core):
V h � r ¼ const and
1

q
op
or

¼ V 2
h

r
: ð79aÞ
(b) Forced vortex (inside the core):
V h ¼ x � r and
dp
dr

¼ q
V 2

h

r
: ð79bÞ
Angular velocity x is 2 and core radius is 0.2. Maximum velocity is 0.36c1. Computational domain

is from �2 to 2 with equal spacing. For grid convergence test, 25 · 25, 50 · 50, 75 · 75 and 100 · 100

grid points are employed. Roe�s FDS, AUSMPW+ and M-AUSMPW+ are used for numerical

fluxes and third order TVD Runge–Kutta time integration method is used. CFL number is 0.8 and

boundary is fixed as initial values. The pressure distributions are plotted at the non-dimensional time

of 40.
Vortex flow
(Density contours)

A

B

Fig. 21. Density contours of vortex flow.
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Since viscous diffusion is not introduced, entropy is constant and a vortex flow should be maintained

forever so long as centrifugal force is balanced with pressure gradient toward a vortex core. Thus, in the

Euler equations, the ideal solution is the initial distribution itself.

Figs. 22 and 23 show the results using van Leer limiter, MLP3 and MLP5. We can see the difference

depending on interpolation schemes. Figs. 24 and 25 show the accuracy improvement of MLP with M-
AUSMPW+. It is shown that MLPs combined with M-AUSMPW+ can provide more accurate results than

third order interpolation scheme without limiting (see Eq. (30)). Fig. 23 is the comparison of entropy var-

iation according to interpolation schemes. In case of superbee, the vortex flow becomes stronger continu-

ously meaning that entropy decreases without lower bound. As a result, it becomes unstable and after all,

computation fails. As expected, MLP5 yields the least increase of entropy and it gives the best result among

the interpolation schemes. This test case suggests that interpolation process should be compatible with flow

physics.

Generally, interpolation step has been considered irrelevant to flow physics and treated mainly
from the mathematical point of view. In actual computations, however, ideal approach is that all

of the interpolation, spatial discretization and time integration schemes should follow flow physics

faithfully. Among these, spatial discretization scheme is developed to satisfy the entropy condition.

For example, AUSMPW+ and M-AUSMPW+ satisfy the entropy condition [22]. Entropy may de-

crease throughout time integration process, such as the redistribution of residual by an implicit

scheme. Lastly, interpolation scheme definitely decreases entropy in some case as explained in Section

3.1.

Figs. 26 and 27 are the results of grid convergence test. Fig. 27(a) shows the L1 norm of density error
when MLP3 is applied to AUSMPW+, Roe�s FDS and M-AUSMPW+. As expected, due to slope lim-

iting effect by the multi-dimensional limiting function, MLP3 is slightly less accurate than third order

interpolation scheme without limiting. As grid system becomes denser, MLP3 asymptotically approaches
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Fig. 22. Comparison of density distributions along the line AB.
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that third order interpolation scheme. On the other hand, MLP3 with M-AUSMPW+ shows more accu-

rate result than third order interpolation with AUSMPW+ or Roe�s FDS, i.e., previous conventional
upwind schemes.
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Similarly, Fig. 27(b) show the L1 norm of density error when MLP5 is applied to AUSMPW+, Roe�s
FDS and M-AUSMPW+. MLP5 is seen to provide accuracy between third and fifth order spatial accuracy.

Especially, MLP5 with M-AUSMPW+ is close to fifth order interpolation with AUSMPW+.
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Based on the previous computations, MLP looks very promising in the computation of multi-

dimensional flows including both discontinuous and continuous regions.

4.5. Shock-wave/boundary-layer interaction

The free stream Mach number is two and the shock is impinging on the wall with the impinging angle of

32.585. The impinging point is the non-dimensional length of 1 from the leading edge of flat plate. Reynolds

number is 2.96 · 105. The adiabatic wall condition is applied for wall boundary condition. The grid system

is 56 · 59 and the denser grid is 150 · 200.

Figs. 28–30 show the comparison of pressure contours by several interpolation schemes. In Fig. 30, the

MLP5 shows a clear flow structure including a reflected shock, an expansion fan, and compression waves

through the separation region.

Fig. 31 shows the comparison of pressure distribution along the line AB. The results with minmod and
van Leer limiters are diffusive, and superbee is non-monotonic. All of MLPs show monotonic and accurate

results. Figs. 32 and 33 show pressure distribution along the line CD. The results with van Leer limiter are

so diffused that the expansion and compression of pressure is grossly deviated from the grid converged solu-

tion. This is because the separation region is resolved too narrowly. In case of superbee limiter, a flow is

compressed and expanded excessively, and the separation region is predicted too much widely. MLP with

M-AUSMPW+ matches well with the grid converged solution.
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Fig. 28. Pressure contours (minmod and van Leer limiters).
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Fig. 29. Pressure contours (superbee and MLP-superbee limiters).
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Figs. 34 and 35 show the distribution of skin friction coefficient. Again, the results with van Leer or

superbee limiters do not predict the size of separated region properly while MLP3 and MLP5 on the same

coarse grid system yield a better agreement with the denser grid result.

Lastly, the error histories of each scheme are compared in Fig. 36. CFL is 3.0 and AF-ADI is used for

the time integration. Unlike the case of superbee limiters, the results of MLP3 and MLP5 are converged

stably. Since the separated region captured by MLP is wider than van Leer case, it takes a little more

iterations.
Overall, MLP shows the similar convergence characteristic to TVD limiter.

4.6. Double Mach reflection

Wall deflection angle is 30� and the initial conditions are as follows.
q; u; v; pð ÞL ¼ 5:149; 4:43182; 0:0; 25:0893ð Þ; q; u; v; pð ÞR ¼ 1:; 0:0; 0:0; 0:714ð Þ:

The grid system is 300 · 250 and third order TVD Runge–Kutta time integration is used. Fig. 37 is the com-

parison of density contours calculated by van Leer limiter and MLP5 at the non-dimensionalized time of

10. MLP5 with M-AUSMPW+ shows more accurate results, especially, in a slip discontinuity region. Fig.

38(a) is pressure distribution along the line AB and Fig. 38(b) shows the detailed comparison of density

distribution inside the circle C. Once again, it verifies multi-dimensional monotonic characteristic of
MLP. Also, as in Fig. 38(c), MLP captures the second Mach wave and the slip discontinuity more clearly.
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DDFig. 37l Comparison of density contours (a) van Leer limiter with AUSMPW+ (b) MLP5 with M-AUS
4.7. Normal shock wave/vortex flow interaction

In this test case, a normal shock wave with the Mach number of 1.29 is propagating into a stationary

vortex, producing a complex flow pattern induced by shock/vortex interaction. Computational domain is
from (0,0) to (40,40). Initially, vortex core is located at the point of (14,14) and the normal shock wave

inclined by 45� angle moves toward vortex from the point of (10,10).
o u b l e M a c h R e f l e c t i o n P r o b l e m ( D e n s i t y c o n t o u r ) (a)v a n L e e r l i m i t e r + A U S M P W +o u b l e M a c h R e f l e c t i o n P r o b l e m ( D e n s i t y c o n t o u r ) (b)M L P 5 + M - A U S M P W + ABMPW+.608K.H. Kim, C. Kim / Journal of Computational Physics 208 (2005) 570–615
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The initial vortex flow is Thomson-Rankine vortex model of Eq. (79) which has the core radius of

0.277 m and the angular velocity of 0.52 rad/s. It is calculated for 15 non-dimensional time, and third order

TVD Runge–Kutta time integration is used. In case of MLP, CFL number is 0.5. For van Leer limiter,

CFL number is 0.2.

The one of main targets in this problem is to predict pressure in core region as accurately as possible. If
we consider the analysis of a blade/vortex interaction or flapping wing aerodynamics, our main concern is

definitely focused on the variation of aerodynamic coefficients induced by vortex flow. When vortex hits a

blade or a wing, aerodynamic coefficients change significantly because of low pressure in core region. An-

other example is vortex flow on flapping wing. Vortex stays on the upper surface of wing and produces a

very high lift. Thus, the accurate computation of the core pressure is crucial in understanding the complex

nature of the high-lift flapping aerodynamics.
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Fig. 39(a) and (b) are results on the coarse (200 · 200) and fine (400 · 400) mesh. The left figure is ob-

tained by van Leer limiter with AUSMPW+ and the right one is by MLP5 with M-AUSMPW+. The high

performance of MLP is certified again in Fig. 39. Even with a smaller CFL number, van Leer limiter cannot

prevent oscillatory phenomena. Even for the flow with vortex and shock discontinuity, computation is per-

formed stably since MLP can control oscillations across a discontinuity and maintain higher accuracy in
continuous region. Flow structure can be seen very clearly with MLP. Fig. 40 shows the more quantitative

comparison of density distribution in core region. The core pressure calculated by AUSMPW+ is somewhat

smeared but MLP5 with M-AUSMPW+ gives about four times more accurate result compared with van

Leer limiter case.

4.8. Viscous shock tube problem

The viscous shock tube problem [23,24] tested in Part I is revisited to examine the accuracy of MLP in
complex shock viscous flows. The Reynolds number is 200 with constant viscosity and the initial state is

given as follows.
Fig.
q; u; v; pð ÞL ¼ 120; 0; 0; 120=cð Þ and q; u; v; pð ÞR ¼ 1:2; 0; 0; 1:2=cð Þ:

Viscous fluxes are calculated by 4th order spatial accuracy, and third order TVD Runge–Kutta method is
used.

Fig. 41 is the comparison of density contours. Case (a)–(c) are results by van Leer limiter with AUS-

MPW+ on coarse (250 · 125), medium (350 · 175) and fine (500 · 250) grid system, and case (d)–(f) are

results by MLP5 with M-AUSMPW+ on the same grid systems. MLP5 with M-AUSMPW+ on coarse grid

system shows a much better result than van Leer limiter with AUSMPW+ on medium grid system, which
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has twice more grid points. Furthermore, it is very similar to the fine grid result which has four times more

grid points. MLP on medium grid system also shows a better result than van Leer limiter with AUSMPW+

on fine grid system, and almost reaches the grid converged result (MLP on fine grid system).

Judging from the direct comparison, MLP5 with M-AUSMPW+ can give about three times grid point

reduction effect. If the influence of iteration number is included, actual grid reduction effect increases even

further. When the same scheme is used, iteration number is generally proportional to grid size in unsteady

flow calculations. For that reason, the total iteration number for case (c) and case (f) are almost double

compared to case (a) and case (d). Thus, it may say that MLP5 with M-AUSMPW+ saves the total com-
putational cost about six times in providing the same level of accuracy. Comparison with other interpola-

tion schemes such as WENO or ACM can be referred to [24].

In Fig. 42, density distributions along the wall are compared with one another. The improvement ob-

served from Fig. 41 is certified again. The result by MLP5 with M-AUSMPW+ on coarse grid system is

more accurate than the result by van Leer limiter with AUSMPW+ on medium grid system.

Table 2 is the comparison of the primary vortex size. The height and angle of the primary vortex, which

is sensitive to numerical dissipation, is converged to 0.168. Even on fine grid system, van Leer limiter with

AUSMPW+ yields smaller vortex while MLP5 with M-AUSMPW+ on medium grid system gives the iden-
tical results in terms of vortex height and angle. Comparing vortex size, case (d) to case (f) provide about

four times grid point reduction effect over case (a) to case (c).
L P 5 + M - A U S M P W + ( 2 5 0 b y 1 2 5 )a n L e e r l i m i t e r + A U S M P W + ( 3 5 0 b y 1 7 5 ) DensitycontourL P 5 + M - A U S M P W + ( 3 5 0 b y 1 7 5 ) Densitycontour
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Table 2

Comparison of the height of the primary vortex

Scheme Case (a)

(250 · 125)

Case (b)

(350 · 175)

Case (c)

(500 · 250)

Case (d)

(250 · 125)

Case (e)

(350 · 175)

Case (f)

(500 · 250)

Height (h) 0.142 0.155 0.163 0.161 0.168 0.168
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5. Conclusions

By analyzing conventional TVD limiters and exploiting higher order TVD interpolation based on the

information on local curvature distribution, a new multi-dimensional limiting function is derived. And, a

new multi-dimensional limiting process (MLP) is developed by combining the multi-dimensional limiting

function with a higher order polynomial interpolation. The newly developed method turns out to have sev-

eral desirable characteristics such as multi-dimensional monotonicity across a discontinuity, robust conver-

gence and computational efficiency comparable to conventional TVD limiters. In addition, higher order
interpolation can be easily incorporated.

The most distinguishable property of MLP is to provide non-oscillatory profiles in multi-dimensional

flows and, as a result, a good convergence characteristic. Thanks to the properties, MLP combined with

M-AUSMPW+ can significantly increase accuracy, convergence/robustness and efficiency both in steady

and unsteady multi-dimensional flows containing physical discontinuities. Through numerous test cases

including a vortex flow, a shock-wave/boundary-layer interaction, shock wave/vortex interaction and

viscous shock tube problem, it is verified that MLP can control numerical oscillations in multi-space dimen-

sions. In addition to robustness improvement across a discontinuity, accuracy enhancement in pure multi-
dimensional problems such as separated flows or vortex flows is remarkable, especially combined with
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M-AUSMPW+. From the numerous computed results, MLP with M-AUSMPW+ generally provides three

or four times accuracy improvement in terms of grid points, compared with TVD with popular flux func-

tions. Also, it does not show the entropy decreasing phenomenon in an expansion flow region.

Through the extension of current outcomes to three-dimensional flows, MLP is expected to bring sub-

stantial reduction of computational cost and accuracy improvement simultaneously.
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